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Abstract: The normal distribution is the most popular model in applications to real 

data. We propose a new extension of this distribution, called the Kummer beta 

normal distribution, which presents greater flexibility to model scenarios involving 

skewed data. The new probability density function can be represented as a linear 

combination of exponentiated normal pdfs. We also propose analytical expressions 

for some mathematical quantities: Ordinary and incomplete moments, mean 

deviations and order statistics. The estimation of parameters is approached by the 

method of maximum likelihood and Bayesian analysis. Likelihood ratio statistics 

and formal goodnessof-fit tests are used to compare the proposed distribution with 

some of its sub-models and non-nested models. A real data set is used to illustrate 

the importance of the proposed model. 

 

Key words: Bayesian analysis, Kummer beta generalized distribution, Maximum 
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1. Introduction 

The main motivation for statisticians to study new families of statistical distributions is to 

increase the flexibility to better model various data sets that cannot be properly fitted by the 

existing distributions. In many applied areas such as environmental and medical sciences, 

engineering, demography, biological studies, lifetime analysis, actuarial, economics, finance and 

insurance there is a clear need for extended forms of these distributions. Exponentiated 

generalized (EG), beta generalized (BG) (Eugene et al., 2002) and Kumaraswamy generalized 

(KwG) (Cordeiro and de Castro, 2011) families of distributions are very versatile to analyze 

different types of data. These families have been widely studied in statistics and some authors 

have developed several special EG, BG and KwG models. For EG models, Mudholkar and 

Srivastava (1993) and Mudholkar et al. (1995) defined the exponentiated Weibull (EW) 

distribution, Gupta et al. (1998) defined the exponentiated Pareto (EPa) distribution, Gupta and 

Kundu (2001) defined the exponentiated exponential (EE) distribution, Nadarajah and Gupta 

(2007) defined the exponentiated gamma (EGa) distribution and Cordeiro et al. (2011) defined 

the exponentiated generalized gamma (EGG) distribution. For BG models, Eugene et al. (2002) 

defined the beta normal (BN) distribution, Nadarajah and Kotz (2004) defined the beta Gumbel 
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(BGu) distribution, Nadarajah and Gupta (2004) defined the beta Fr´echet (BF) distribution, 

Nadarajah and Kotz (2006) defined the beta exponential (BE) distribution and more recently, 

Pescim et al. (2010) and Parana´ıba et al. (2011) studied important mathematical properties of 

the beta generalized half-normal (BGHN) and beta Burr XII (BBXII) distributions, respectively. 

For KwG models, Cordeiro and de Castro (2011) defined the Kumaraswamy normal (KwN) 

distribution, Cordeiro et al. (2010) defined the Kumaraswamy Weibull (KwW) distribution, 

Pascoa et al. (2011) defined the Kumaraswamy generalized gamma distribution, Cordeiro et al. 

(2012b) defined the Kumaraswamy Gumbel (KwGu) distribution, Cordeiro et al. (2012c) defined 

the Kumaraswamy generalized half-normal (KwGHN) distribution and more recently, Parana´ıba 

et al. (2013) defined the Kumaraswamy Burr XII (KwBXII) distribution. However, the beta, 

Kumaraswamy and exponentiated generators do not provide flexibility to the extremes (right and 

left) of the probability density functions (pdfs). For this reason, they are not suitable for analyzing 

real data with high levels of asymmetry. 

For an arbitrary baseline distribution G(x; γ) with parameter vector γ and pdf g(x; γ), Pescim 

et al. (2012) proposed the Kummer beta generalized (denoted by the prefix “KB-G” for short) 

family of distributions that provides greater flexibility to extremes. Its cumulative distribution 

function (cdf) is defined by 

                          (1) 

where a > 0 and b > 0 are shape parameters which induce skewness, and thereby promote 

weight variation of the tails, whereas the parameter −∞ < c < ∞ “squeezes” the pdf to the left or 

right, i.e., it gives weights to the extremes of the pdfs. Here, 

 
and, 

 
is the confluent hypergeometric function (Abramowitz and Stegun, 1968), Γ(·) is the gamma 

function and (d)k = d(d + 1) … (d + k − 1) denotes the ascending factorial. 

 

The pdf corresponding to (1) can be expressed as 

   (2) 

Equation (2) will be most tractable when both G(x; γ ) and g(x; γ ) have simple analytic 

expressions. Its major benefit is to offer more flexibility to extremes (right and/or left) of the pdfs 

and therefore it becomes suitable for analyzing data with high degree of asymmetry. 

The KB-G class of distributions includes two important special cases: the beta-generalized 

(BG) distribution for c = 0 and the exponentiated generalized (EG) distribution for c = 0 and b = 

1. Pescim et al. (2012), Cordeiro et al. (2014), Pescim et al. (2014) and Pescim and Nadarajah 



(2015) defined the Kummer beta Weibull (KBW), Kummer beta generalized gamma (KBGG), 

Kummer beta Birnbaun-Saunders (KBBS) and Kummer beta gamma (KBGa) distributions by 

taking G(x) and g(x) to be the cdf and the pdf of the Weibull, generalized gamma, Birnbaum-

Saunders and gamma distributions, respectively. They studied several mathematical properties 

of these distributions and showed clear evidence of the potential of the three skewness parameters 

when modeling real data. 

The normal distribution is the most popular model in applications to real data. When the 

number of observations is large, it can serve as an approximation for other models. Over the past 

decades, several authors have proposed new generalizations based on the normal distribution for 

modeling real data sets; see, for example, Azzalini (1985), Eugene et al. (2002), Nadarajah (2005), 

Cordeiro and de Castro (2011), Cordeiro et al. (2012a), Nadarajah et al. (2014) and Alzaatreh et 

al. (2014) for skew-normal, beta normal, generalized normal, Kumaraswamy normal, McDonald 

normal, modified beta normal and gamma normal distributions, respectively. The emergence of 

such distributions in the statistics literature is only very recent. 

The cdf and the pdf of the normal distribution with location parameter −∞ < µ  < ∞ and scale 

parameter σ > 0 are given by 

 
and 

                 (3) 

respectively. 

 

In this paper, we propose the Kummer beta normal (denoted with the prefix “KBN”) 

distribution and provide a comprehensive description of some of its mathematical properties with 

the hope that it will attract wider applications in many areas of research. The main motivation for 

this extension is that the new distribution is a highly flexible distribution which admits different 

degrees of kurtosis and asymmetry. The normal distribution represents only a special case of the 

KBN distribution. 

The cdf and the pdf of the KBN distribution are obtained from equations (1) 

and (2) as  

 
And 

  (5) 

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, a and b are positive 

shape parameters, and c ∈ R is a real-valued shape parameter. Hereafter, we denote by X a 
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random variable following (5), and write X ∼ KBN(a, b, c, µ , σ). For µ  = 0 and σ = 1, we have the 

standard KBN distribution. This pdf has three shape parameters a, b and c allowing for a high 

degree of flexibility. The parameter c controls tail weights to the extremes of the distribution. 

The study of the new distribution is important since it extends some distributions previously 

considered in the literature. In fact, the normal distribution (with parameters µ  and σ) is clearly a 

basic exemplar for a = b = 1 and c = 0, with a continuous crossover towards distributions with 

different shapes (e.g., a specified combination of skewness and kurtosis). The KBN distribution 

contains as sub-models the beta normal (BN) distribution for c = 0 and the exponentiated normal 

(EN) distribution for c = 0, b = 1. Plots of the KBN pdf for selected parameter values are displayed 

in Figure 1. It is evident that the shapes of the new pdf are much more flexible than its sub-models. 

The article is outlined as follows. In Section 2, we provide useful expansions for the pdf of 

the KBN distribution. We obtain explicit expressions for the ordinary and incomplete moments 

(Section 3) and order statistics (Section 4). In Section 5, we discuss some statistical inference 

like maximum likelihood method and Bayesian approach. A real data application given in Section 

6 reveals the usefulness of the new distribution for analyzing real data. Concluding remarks are 

addressed in Section 7. 

 

2. Useful expansions 

Expansions for equations (4) and (5) can be derived using the concept of exponentiated 

distributions. Consider the exponentiated normal (EN) distribution with power parameter a > 0 

defined by Y ~ EN(a, µ, σ), with the cdf and the pdf given by H(y; a) = Φ (
y−μ

σ
)

𝑎
 and h(𝑦; 𝑎) =

a

b
𝜙 (

y−μ

σ
) Φ (

y−μ

σ
)

𝑎−1
, respectively. 

 

By expanding the term exp [−𝑐Φ (
x−μ

σ
)] and using the binomial in equation (5), we obtain 

the linear combination (for a >0 integer) 

 

                                    (6) 

 

Where h(x;a+j+k,μ ,σ ) denotes the EN (a+j+k,μ , σ ) pdf and the coefficient Wj,k is given by 

 

 
 

By integrating (6), we obtain 

 



                                      (7) 

 

If a is positive non-integer, we can expand [Φ (
x−μ

𝜎
)]

a+j+k
 as  

 

             (8) 

 

Where 

 

 
 

Thus, from equation (3), (7) and (8), the KBN cdf can be express as  

 

                      (9) 

 

By differentiating (9) and changing indices, we can obtain 

 

                                       (10) 

 

Where br = ∑ 𝑤𝑗,𝑘  𝑠𝑟(𝑎 + 𝑗 + 𝑘)∞
𝑗,𝑘=0 . Equation (10) reveals that the KBN pdf is a linear 

combination of EN pdfs. So, several properties of the KBN distribution can be obtained by 

knowing those properties of the EN distribution. 
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Figure 1: Plots of the KBN pdf for some parameter values: (a) KBN(8,2,c,0,1), (b) KBN(1.5, 2,c,0,1) 

and (c) KBN (0.1,0.1,c,0,1)pdfs (the red lines represent the BN pdfs). 

 

3. Ordinary and incomplete moments 

Hereafter, let X denote the KBN(a, b, c, µ , σ) random variable. The sth moment of X for µ  = 

0 and σ = 1 can be expressed from (10) as  

 
and then  

 

where b𝑟
∗ = 𝑟 𝑏𝑟 and τs,r = ∫ 𝑥𝑠𝜙(𝑥)Φ(𝑥)𝑟−1𝑑𝑥

∞

−∞
 is the (s,r)th probability weighted moment 

(PWM) (for s and r positive integers) of the nrmal distribution. 

Nadarahah(2008) demonstrated that the (s.r)th PWM of the normal distribution can be 

expressed in terms of the Laricella function of type A (Exton, 1978) as  

 

 



 
where 

 

 
is the Lauricella function of type A and the Pochhammer symbol (a)k = a(a + 1) …(a + k − 1) 

indicates the kth rising factorial power of a with the convention (a)0 = 1. 

The skewness and kurtosis measures can be calculated from the ordinary moments using 

well-known relationships. Plots of the skewness and kurtosis of the KBN distribution as a 

function of c for selected values of a and b for µ  = 0 and σ = 1.0 are displayed in Figures 2 and 

3. Figures 2a and 2b immediately indicate that the additional parameter c promotes high levels 

of asymmetry.  

 
Figure 2: Skewness of the KBN distribution as a function of c for some values of a and b for μ =0 

and σ =1.0 (a) b=1.5 and (b) a=1.5 

 



 

516                           The Kummer Beta Normal: A New Useful-Skew Model 

Figure 3: Kurtosis of the KBN distribution as a function of c for some values of a and b for μ =0 and 

σ =1.0. (a) b= 1.5 and (b) a =1.5. 

 

The sth incomplete moment of X is defined by ms(y) =  E(XsIX<y)  =  ∫ 𝑥𝑠𝑓(𝑥)𝑑𝑥
𝑦

−∞
. 

Consider the case μ = 0 and σ =1. Based on equation (10), ms (y) reduces to 

                            (12) 

where 𝑏𝑟
∗ is defined in (11). 

We can write Φ(x) as a power series∑ Φ(x)  = ηm𝑥𝑚∞
𝑚=0 , where η0 =

(1+√
2

𝜋
)

−1

2
,η2m+1 =

(−1)𝑚

√2𝜋2𝑚(2𝑚+1)𝑚!
 for m = 0, 1, 2, … and η2m = 0 for m = 1, 2, … . Using an identity given by 

Gradshteyn and Ryzhik (2007) for a power series raised to a positive integer j, 

 

                                            (13) 

 

where the coefficients cj,i (for i = 1,2,…) are easily obtained from the recurrence equation  

 

                            (14) 

 

and c𝑗,0 = a0
𝑗
. 

Further, using (13), we have  

                                             (15) 

where the coefficients ηr-1,m can be determined from the recurrence equation (14). Thus, using 

(15) and changing variable in integral (12), the sth incomplete moment of X is given by  

    (16) 

where 𝛤(𝑎, 𝑥) = ∫ 𝑡𝑎−1∞

𝑥
𝑒−𝑡𝑑𝑡 denotes the complementary incomplete gamma function. 

Consider the case µ = 0 and σ = 1. We can derive the mean deviations of X about the mean 

µ1
′  and about the median M (δ2) in terms of the first incomplete moments. The median can be 



obtained by inverting F(M) =  K ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑒−𝑐𝑡Φ(𝑀)

0
𝑑𝑡 =

1

2
 numerically. They can be 

expressed as  

 
 

Where m1(·) is the first incomplete moment of X given by (16) with s = 1. We have  

       (17) 

The measure δ1 and δ2 can be calculated from (17) by setting y = µ1
′  and y = M, respectively. 

An application of the mean deviations is to the Lorenz and Bonferroni curves defined by L(π) = 

m1(q)/ µ1
′  and B(π) = m1(q)/π µ1

′ , respectively, where q = F-1(π) can be computed foe a given 

probability π by inverting (4) numerically. These curves have applications in several fields and 

can be calculated from equation (17). 

 

4. Order Statisitcs 

Order statistics have been used in a wide range of problems, including robust statistical 

estimation and detection of outliers, characterization of probability distributions and goodness-

of-fit tests, entropy estimation, analysis of censored samples, reliability analysis, quality control 

and strength of materials. 

Suppose Z1 , ..., Zn is a random sample from the standard KBN distribution and let Z1:n < … 

< Zi:n denote the corresponding order statistics. The pdf fi:n(z) of the ith order statistic can be 

written as  

 
We now demonstrate that fi:n (z) can be written as a linear combination of standard EN pdfs. 

First, we provide an expansion for the cdf of the standard KBN distribution. Using (9) and (10), 

the pdf of the ith order statistic, Zi:n , can be expressed as  

 

 
 

From equation (13), we obtain  
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where bi+j−1,0 = b0
i+j−1

 and 

 

 
 

Hence, the pdf of the ith order statistic for the standard KBN distribution can be expressed as  

 

            (18) 

Equation (18) is the main result of this section. It gives the pdf of the standard KBN order 

statistics as a linear combination of standard EN pdfs. So, several mathematical quantities of 

standard KBN order statistics like ordinary moments, generating function, and mean deviations 

follow immediately from those quantities of the standard EN distribution. 

 

5. Inference and estimation 

5.1 Maximum likelihood method 

In this section, the estimation of the model parameters of the KBN distribution will be 

investigated by maximum likelihood. Let X = (X1 , . . . , Xn) be a random sample from this 

distribution with unknown parameter vector θ = (a, b, c, µ , σ)T . The total log-likelihood function 

for θ is 

 

                                        (19) 

 

the elements of score vector are 

 

    

 



 

 
 

 

 

 
 

where the partial derivateives of K in relation to a, b and c are 

 

 

 

 
 

 

 
and 

 
where ψ (x) and d log Γ (x)/dx denotes the digamma function. 

 

Maximization of (19) can be performed by using well established routines like the nlm 

routine or optimize in the R statistical package. Setting these equations to zero, U(θ) = 0, and 
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solving them simultaneously yields the maximum likelihood estimate (MLE) �̂� of θ. These 

equations cannot be solved analytically and statistical software can be used to solve them 

numerically by means of iterative techniques like the Newton-Raphson algorithm. 

Most For interval estimation and hypothesis tests on the parameters in θ, we require the  

5 X 5 total observed information matrix J(θ) = -{ Urs }, where the elements Urs, for r, s = μ , σ , 

a, b, c can be obtained numerically. The estimated asymptotic multivariate normal 

𝑁5 (0, 𝐽(𝜃)
−1

) distribution of �̂� can be used to construct approximate confidence regions for 

parameters. An asymptotic confidence interval with significance level γ for each parameter θr is 

given by 

 

 
where κ̂𝜃𝑟,𝜃𝑟 is the rth diagonal element of J(θ)-1 estimated at �̂� for r = 1,2,3,4,5 and zγ/2 is the  

1 γ/2 quantile of the standard normal distribution. 

The likelihood ratio (LR) statistic is useful for comparing the new distribution with some 

of its special models. For example, we may adopt the LR statistic to check if the fit using the 

KBN distribution is statistically “superior” to a fit using the normal distribution for a given data 

set. In any case, considering the partition 𝜃 =  (θ1
T , θ2

T )
T
, tests of hypotheses of the type H0 : θ1 

= θ1
(0) versus HA: θ1 ≠ θ1

(0) can be performed using the LR statistic 𝑤 = 2 {ℓ(θ̂) − ℓ(�̃�)}, where 

θ̂ and θ̃ are the estimates of θ under HA and H0, respectively. Under the null hypothesis H0, 𝑤 
d
→ χ𝑞

2, where q is the dimension of the vector θ1 of interest. The LR test rejects H0 if w > ξγ , 

where ξγ denotes the upper 100γ % point of the χ𝑞
2 distribution. 

 

5.2 Bayesian inference 

As it is well-known, the Bayesian approach allows for the incorporation of previous 

knowledge of the parameters through informative prior pdfs. When this information is not 

available, we can consider a non-informative prior. In the Bayesian context, the information 

referring to the model parameters is obtained through a posterior marginal distribution. Two 

difficulties usually arise. The first one refers to obtaining the marginal posterior distribution, and 

the second to the calculation of the moments of interest. Both cases require numerical integration 

that, many times, do not present an analytical solution. To overcome these problems, we use the 

simulation methods based on the Markov Chain Monte Carlo (MCMC), like the Gibbs sampler 

and Metropolis-Hastings algorithms. 

Since we have no prior information from historical data or from previous experiments, we 

assign conjugate but weakly informative prior distributions to the parameters. Since we assume 

an informative (but weakly) prior distribution, the posterior distribution is a well-defined proper 

distribution. We assume that the parameters (a, b, c, µ  and σ) have independence priors and 

consider that the joint prior distribution of all unknown parameters has a pdf given by 



  

 

 

 

 
and 

 

 
Since the full conditional distributions do not have explicit expressions, we require the use 

of the Metropolis-Hastings algorithm to generate the variables a, b, c, µ  and σ for the KBN 

distribution. 

 

6. Application – INPC data 

This section contains an application of the Kummer beta normal (KBN) distribution to a real 

data referred to as INPC data. We shall compare the fits of the KBN distribution with those of 

two sub-models (the beta normal (BN) and normal distributions) and also to the following non-

nested models: the McDonald Normal (McN) (Cordeiro et al., 2012a), the gamma-normal (GN) 

(Alzaatreh et al., 2014) and the modified beta normal (MBN) (Nadarajah et al., 2014) 

distributions. 

The INPC is a national index of consumer prices of Brazil, released by IBGE (Brazilian 

Institute of Geography and Statistics). The period of collection goes from day 01 to 30 of the 

reference month and the target population includes families dwelling in the urban areas, whose 

head of the household is considered the main employee. The survey was conducted in the 

metropolitan regions of Bel´em, Belo Horizonte, Bras´ılia, Curitiba, Fortaleza, Goiˆania, Porto 

Alegre, Recife, Rio de Janeiro, Sao Paulo and Salvador. The data set was extracted from the 

IBGE database available at http : //www.ibge.gov.br and reported by De Morais (2009). Table 1 

presents a descriptive summary for the INPC data set and suggests a skewed distribution with 

high degrees of skewness and kurtosis. 
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Table 2: MLEs and the corresponding SEs (given in parentheses) of the model parameters for the 

INPC data and the measure AIC and BIC. 

 
 

Table 3: LR statistics for the INPC data. 

 
  



(i) Maximum likelihood estimation 

 

Table 2 gives the MLEs and the corresponding SEs (given in parentheses) of the model 

parameters and the values of the following statistics for some models: Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC). The computations were performed 

using the statistical software R. The AIC and BIC values for the KBN model are the smallest 

values among those fitted submodels and non-nested models. 

A formal test of the need for the third skewness parameter in KB-G distributions can be based 

on the LR statistics. The results of this test are shown in Table 3 for the INPC data set. We reject 

the null hypotheses of the LR test in favor of the KBN distribution. The rejection is extremely 

highly significant and it gives clear evidence of the potential need for the three skewness 

parameters when modeling real data. 

Figure 4 displays the histogram of the data and fitted pdfs of the KBN distribution, its sub-

models and non-nested models. Further, Figure 5 plots the empirical cdf and estimated cdfs of 

the KBN distribution, its sub-models and non-nested models. We note that the KBN distribution 

produces better fit than the other models. 

We also apply formal goodness-of-fit tests in order to verify which distribution fits the data 

better. We consider the Cram ér-Von Mises (W∗) and AndersonDarling (A∗) statistics. In general, 

the smaller the values of the statistics, W∗ and A∗, the better the fit to the data. Let F (x; �̂�) be the 

cdf, where the form of F is known but �̂� (a k-dimensional parameter vector, say) is unknown. To 

obtain the statistics, W∗ and A∗, we proceed as follows: 

 

(i) compute vi  =  F(xi, θ̂) , where the xi’s  are in ascending order,  yi =  Φ−1(vi)  is the 

standard normal quantile function and u𝑖 = Φ{(yi − y̅ /sy)}, where  

 
(ii) compute 

 
and 

 
(iii) modify W2 into W∗  =  W2(1 + 0.5/n) and A∗ into A∗  =  A2(1 + 075/n + 2.25/n2). 
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Figure 4: (a) Estimated pdfs of the KBN distribution and its sub-models.  

(b)Estimated pdfs of the KBN, GN, McN and MBN models. 

 

 
Figure 5: (a) Empirical and estimated cdfs of the KBN distribution and its sub-models.  

(b) Empirical and estimated cdfs of the KBN, GN, McB and MBN models. 

 

For further details, the reader is referred to Chen and Balakrishnan (1995). Thevalues of the 

statistics, W∗ and A∗, for the distributions are given in Table 4. Overall, by comparing the measures 

of these formal goodness-of-fit tests in Table 4, we conclude that the KBN distribution 

outperforms all the distributions considered in this study. So, the proposed distribution can yield 

better fits than the normal, BN, GN, McN and MBN distributions and therefore may be an 

interesting alternative to these distributions for modeling skewed data sets. These results illustrate 

the potentiality of the new distribution and the necessity for additional shape parameters. 

  



 

Table 4: Formal goodness-of-fit tests for the INPC data. 

 
 

 

The QQ plots of the normalized quantile residuals was introduced by Dunn and Smyth (1996) 

and more recently used by Cordeiro et al. (2013). Figures 6 and 7 indicate the improved fit 

achieved using the KBN distribution over other distributions. We also emphasize the gain yielded 

by the KBN distribution in relation to the normal, BN, GN, McN and MBN distributions. 

(ii) Bayesian analysis 

 

For the INPC data set, the following independent priors were considered to perform the 

Metropolis-Hastings algorithm: a ∼ Ga(0.001, 0.001), b ∼ Ga(0.001, 0.001), c ∼ N(0, 1000), µ ∼ 

N(0, 1000) and σ ∼ Ga(0.001, 0.001), so that we have a vague prior distribution. Considering 

these prior pdfs, we generated two parallel independent runs of the Metropolis-Hastings with size 

300,000 for each parameter. Disregarding the first 30,000 iterations to eliminate the effect of the 

initial values and, to avoid correlation problems, we considered a spacing of size 10, obtaining a 

sample of size 27,000 from each chain. To monitor the convergence of the Metropolis-Hastings, 

we performed the methods suggested by Cowles and Carlin (1996). To monitor the convergence 

of the samples, we used the between and within sequence information, following the approach 

developed in Gelman and Rubin (1992) to obtain the potential scale reduction, Rb. In all cases, 

these values were close to one, indicating the convergence of the chain. 
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Figure 6: QQ plot of the normalized quantile residuals with an identity line for the 

distributions: (a) KBN, (b) Normal and (c) BN 

  



 
Figure 7: QQ plot of the normalized quantile residuals with an identity line for the 

distribution: (a) GN, (b) McN, (c) MBN. 
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The approximate posterior marginal pdfs of the parameters are illustrated in Figure 8. Table 

5 reports the posterior summaries (posterior means, standard deviation (SD) and the 95% highest 

posterior density (HPD) intervals) for all parameters of the KBN distribution. We note that the 

values for posterior means (Table 5) are in good agreement with the MLEs. 

 
Figure 8: Approximate posterior marginal pdfs for the parameters of the KBN model for the 

INPC data. 

 

7. Concluding remarks 

We have introduced the Kummer beta normal (KBN) distribution with three shape parameters. 

The new distribution has proved to be versatile and analytically tractable. The KBN pdf can be 

expressed as a linear combination of exponentiated normal pdfs which allows us to derive some 

of its mathematical properties like its ordinary and incomplete moments, mean deviations and 

order statistics. The estimation of parameters has been approached by the method of maximum 

likelihood and Bayesian analysis. The usefulness of the KBN distribution has been illustrated by 

an application to a real data set. The new distribution provides a rather flexible mechanism for 

fitting a real world data and it may attract wider applications in many areas of research. 

 
Table 5: Posterior summaries for the parameters of the KBN model for the INPC data. 
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